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ABSTRACT

Test failures are one of the most common reasons for broken builds in
continuous integration. It is expensive to diagnose all test failures in
abuild. As test failures are usually caused by a few underlying faults,
triaging test failures with respect to their underlying root causes can
save test failure diagnosis cost. Existing failure triage methods are
mostly developed for triaging crash or bug reports, and hence not ap-
plicable in the context of test failure triage in continuous integration.
In this paper, we first present a large-scale empirical study on 163,371

broken builds caused by test failures to characterize test failures in real-

world Java projects. Then, motivated by our study, we propose a new
change-aware approach, BUILDSHERIFF, to triage test failures in each
continuous integration build such that test failures with the same root
cause are put in the same cluster. Our evaluation on 200 broken builds
has demonstrated that BUILDSHERIFF can significantly improve the
state-of-the-art methods on the triaging effectiveness.

CCS CONCEPTS
+ Software and its engineering — Software testing and de-
bugging.
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1 INTRODUCTION

Continuous integration (CI) [20] has gained widespread use and con-
tinued growth [21, 50] as it helps detect integration errors earlier, en-
hance developer productivity, and reduce development risk [31, 66].
Each integration is verified by an automated build that includes de-
pendency installation, code compilation, static analysis, and test case
execution. However, CI builds often break (i.e., fail), and developers
need to spend much effort in troubleshooting broken builds [30]. As
evidenced by several recent studies with open-source and industrial
projects [8, 34, 37, 55, 67], test failures are one of the most frequent
types of CI build failures; e.g., test failures are responsible for 59.0%
of broken builds in open-source Java projects [8]. Developers need
to manually localize and repair the underlying faults of test failures
in each build. However, it is non-trivial for developers to analyze
test failures in a build because a build is not always triggered for ev-
ery commit, and a build may change multiple source code files. In
that sense, it is usually time-consuming and expensive to manually
diagnose test failures in each build.

To reduce test failure diagnosis cost, a number of techniques have
been proposed from different perspectives. One line of work tries to
design fault localization techniques to automatically localize faults
that cause test failures [27, 53, 70, 72, 74]. Another line of work tries
to develop program repair techniques to automatically fix faults [48].
Orthogonal to these two types of techniques, test failure triage tech-
niques are designed to cluster test failures that are caused by the same
fault into the same cluster [25, 26]. In this way, test failure diagnosis
can be realized by only analyzing one test failure in each cluster but
not all the test failures, which can reduce manual diagnosis cost or
boost automated fault localization and program repair techniques.

Existing failure triage methods are mostly designed to triage crash
or bug reports. Sharing the same problem as test failures in CI builds,
multiple reports can be filed for the same fault. These methods can be
grouped into stack trace-based (e.g., [10, 15, 17, 43]), profiling-based
(e.g., [14, 22, 44, 52]), and text-based methods (e.g., [3, 57, 61, 62]),
depending on what information (i.e., stack traces, execution profiles,
and textual descriptions) is used to measure failure similarity.

Unfortunately, stack trace-based methods are not applicable in the
context of test failure triage in CI because they are not designed for test
failures in CI, and are not aware of the test failure characteristics and po-
tentially valuable knowledge in CI for better triage. First, we show in our
study (Sec. 2.1) that 73.2% of broken builds with test failures are caused
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by assertion failures, which do not report any informative exception
stack trace. As a result, stack trace-based methods could have a poor
performance on triaging assertion failures. Second, we also report in
our study (Sec. 2.1) that test failures in 78.5% of the 200 randomly se-
lected broken builds share one root cause. Hence, stack trace-based
methods could tend to triage test failures into one single cluster such
that they could still yield an overall good performance although they
have a poor performance on triaging test failures into multiple clus-
ters. Third, code changes in CI builds, a valuable knowledge in CI but
not available in crash or bug reports, usually have a great impact on
test results [46]. Thus, stack trace-based methods, simply relying on
stack traces without taking into account code changes, could be less
effective. Profiling-based and text-based methods are also not appli-
cable to test failure triage in CI because execution profiles would im-
pose too large overhead to be practically used in CI [46] while tex-
tual descriptions (which are often written by users in crash or bug re-
ports) of test failures are not produced during automated CI builds.

In this paper, we first present a large-scale empirical study, using
163,371 broken builds caused by test failures from 1,337 GitHub Java
projects, to understand test failures in CI builds. We characterize the
prevalence of two types of test failures (i.e., exception failures and as-
sertion failures), and motivate the potential value and the design in-
sights of test failure triage. Then, we propose a new change-aware ap-
proach, BUILDSHERIFF, to triage test failures for CI builds so that test
failures with the same root cause are put to the same cluster. The key
idea of BUILDSHERIFF is to consider code changes as important triage
knowledge as root causes of test failures are often introduced by code
changes [75]. We develop a pipeline of three strategies based on com-
plexity of code changes, change-aware stack trace similarity, and ex-
ception message similarity for exception failure triage, and a pipeline
of two strategies based on complexity of code changes and change-
aware test code similarity for assertion failure triage. To the best of our
knowledge, this is the first work to triage test failures in general CIL.

To evaluate the effectiveness and efficiency of BUILDSHERIFF, we
compared it with one naive method and three state-of-the-art meth-
ods [12, 15, 17] on 200 broken builds with respect to 20 metrics. Our
evaluation results have demonstrated that i) BUILDSHERIFF can sig-
nificantly improve the naive method on 13 of the 20 metrics (e.g.,
by 14%+ on the number of correctly triaged builds, and 77%+ on the
number of missed root causes); ii) BUILDSHERIFF can significantly
improve the best of the state-of-the-art methods on 15 of the 20 met-
rics (e.g., by 45%+ on the number of correctly triaged builds, and 28%+
on test failure inspection effort saving) and slightly improve the
best of the state-of-the art methods on 4 of the 20 metrics; and iii)
the average time overhead to triage a build is 1.61 seconds.

In summary, this paper makes the following contributions.

o We conducted a large-scale empirical study to characterize test fail-
ures in real-world Java projects and motivate test failure triage.

e We proposed a new change-aware approach, BUILDSHERIFF, to triage

test failures in CI builds effectively and practically.
e We conducted experiments on 200 broken builds to demonstrate
the effectiveness and efficiency of BUILDSHERIFF.

2 MOTIVATION

In this section, we first present an empirical study of test failures,
and then introduce motivating examples of test failures.

Chen Zhang, Bihuan Chen, Xin Peng, and Wenyun Zhao

2.1 An Empirical Study of Test Failures

Data Set. To construct the data set for our empirical study of test fail-
ures, we start with the data set proposed by Zhang et al. [73], which
includes the CI build history of 3,799 Java projects on GitHub. To the
best of our knowledge, it is the largest available data set of CI builds.
To ease the extraction of test failure information from build logs, we
focus on projects that use Maven as the automated build tool, which
results in 1,763 projects. To further ensure that CI is commonly used,
we exclude the projects that only have less than 100 builds, which re-
stricts our selection to 1,739 projects with a total of 3,981,842 builds.
Of these builds, 833,209 (20.9%) builds have a build state of errored or
failed, which are also known as broken builds. In particular, 163,371
(19.6%) of these broken builds, covering 1,337 projects, are caused by
test failures, which is lower than the 59.0% as reported by Beller et
al. [8] (using 423 Java projects). The difference may be due to the dif-
ferent scale of studies. Still, test failure is a non-negligible failure
type of broken builds, and affects many of the Java projects. Notice
that a test is considered as failed in CI if it throws an exception (i.e.,
exception failure) or fails an assertion (i.e., assertion failure), and the
build log from Maven projects also provides a summary of the num-
ber of tests that signals exception failures and assertion failures.
Research Questions. Using 163,371 broken builds with test fail-
ures (hereafter referred to as test-failed builds) from 1,337 projects,
our study is designed to answer the following research questions.

RQ1: How many test-failed builds in a project exhibit the symptom
of exception and assertion failures during test execution?

RQ2: How many tests in a test-failed build signal exception and as-
sertion failures during test execution?

RQ3: How many root causes affect failed tests in a test-failed build?

In RQ1, we measure for each project the ratio of test-failed builds that
exhibit the symptom of exception and assertion failures during test ex-
ecution, and compute the ratio distribution across all projects. Our re-
sults from RQ1 aim to characterize the prevalence of both exception
and assertion failures, and motivate the need for a triage approach to
support both of them. In RQ2, we measure for each test-failed build
the number of all tests and the number of tests that signal exception
and assertion failures, and compute their distribution across all test-
failed builds. In RQ3, we randomly select 100 test-failed builds with
exception failures and 100 test-failed builds with assertion failures,
manually triage the failed tests via locating their root causes, and re-
port the distribution of the number of root causes. Our results from
RQ2 and RQ3 aim to motivate the potential value of triaging test
failures in CI, and demonstrate the specific characteristics of test
failures in CI to better design a triage approach.

Test-Failed Build Analysis (RQ1). Overall, 80,778 (49.4%) of the
163,371 test-failed builds, covering 1,154 projects, exhibit the symp-
tom of exception failures, and 119,514 (73.2%), covering 1,246 projects,
exhibit the symptom of assertion failures. In detail, Fig. 1a shows the
distribution of the ratio of test-failed builds that have exception fail-
ures and assertion failures across all projects in violin plot. The three
lines in each plot respectively denote the upper quartile, the median
and the lower quartile. We can see that at least 24.1%, 58.8% and 85.7%
of the test-failed builds contain exception failures in 75%, 50% and 25%
of the projects, whereas more than 55.8%, 81.1% and 100% of the test-
failed builds have assertion failures in 75%, 50% and 25% of the projects.
These results indicate that assertion failures are even more common
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than exception failures to cause test-failed builds. Therefore, test fail-
ure triage in CI should support both exception and assertion failures,
and existing stack trace-based failure triage techniques, which mainly
support exception failures, are not directly applicable in CL

Failed Test Analysis (RQ2). Fig 1b reports the distribution of the
number of all tests (in the left violin plot) and the number of failed tests

(in the right violin plot) across the 80,778 test-failed builds that have ex-

ception failures and the 119,514 test-failed builds that have assertion
failures in logarithmic scale. We can observe that in 75%, 50% and 25%
of the test-failed builds that have exception failures, there are at least
50, 403 and 1,636 tests, while at least 1, 3 and 9 tests signal exception
failures; and in 75%, 50% and 25% of the test-failed builds that have
assertion failures, there are at least 132, 536 and 2,000 tests, while at
least 1, 2 and 4 tests signal assertion failures. Compared to the num-
ber of all tests, the number of failed tests is relatively very small. In
particular, 52,586 of the 80,778 test-failed builds have at least two
tests signal exception failures, and their median number of tests sig-
naling exception failures is 6, while 62,494 of the 119,514 test-failed
builds have at least two tests signal assertion failures, and their me-
dian number of tests signaling assertion failures is 4. These results
demonstrate that multiple test failures are moderately common in
CI builds, which represents the potential reduction of test failure
diagnosis cost that can be achieved by test failure triage.

Root Cause Analysis (RQ3). We randomly pick 100 test-failed
builds that have at least two tests signal exception failures and 100
test-failed builds that have at least two tests signal assertion failures,
achieving a confidence level of 95% and a margin of error of 9.8%. It is
worth mentioning that over 30% of these 200 broken builds were trig-
gered after more than two commits, and on average, around nine
source code files were changed in each of the 200 broken build. Thus,
it is non-trivial for developers to diagnose test failures in a build. Two
of the authors separately diagnose failed tests in these 200 test-failed
builds by investigating the previous commits that may introduce the
failure, the succeeding commits that may fix the failure and the build
log in order to identify the root cause for each failed test. We define a
root cause as the code changes that introduce the failure. Then, they
investigate inconsistent cases together to reach consensus. We spent
around 1.5 person-month to complete the manual analysis. Fig. 1c re-
ports the manual triage results, i.e., the distribution of the number of
root causes across the 200 test-failed builds. We can see that the failed
tests with exception failures have the same root cause in 82 builds, and
have multiple root causes in 18 builds. The failed tests with assertion
failures have the same root cause in 75 builds, and have multiple root
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testNumDecompositionLevelsLossless(loci.formats.utests.JAIllOServiceTest) Time elapsed: 0.259 sec <<< FAILURE!
java.io.lOException: closed
mDt, at javaximageio.stream.ImagelnputStreamimpl.checkClosed(ImagelnputStreamimpl.java:110)
mbDt, at javaximageio.stream.ImagelnputStreamImpl.close(ImagelnputStreamImpl java:857)
mbDt, at javaximageio.stream.MemoryCachelmagelnputStream.close(MemoryCachelmagelnputStream java:173)
0  atlociformats.services.JAllIOServicelmpl.readimage(JAllIOServicelmpl java:153)
3 atloci.formats.utests.JAlllOServiceTest.testNumDecompositionLevelsLossless(JAIllOServiceTest.java:272)

(a) Exception Failure in Test testNumDecompositionLevelsLossless

testReadRasterLevelOLossy(loci.formats.utests.JAIlIOServiceTest) Time elapsed: 0.022 sec <<< FAILURE!
java.io.lOException: closed
mbDt, at javaximageio.stream.ImagelnputStreamimpl.checkClosed(ImagelnputStreamimpl java:110)
mDt, atjavaximageio.stream.ImagelnputStreamimpl.close(ImagelnputStreamimpl java:857)
mDt, at javax.imageio.stream.MemoryCachelmagelnputStream.close(MemoryCachelmagelnputStream java:173)
0  atloci.formats.services.JAlllOServicelmpl.readRaster(JAIllOServicelmpl java:179)
3 atloci.formats.utests.JAIlIOServiceTest.testReadRasterLevelOLossy(JAIllOServiceTest java:223)

(b) Exception Failure in Test testReadRasterLevel@Lossy

testSaveBytesTiling(loci.formats.utests.out.TiffWriterTest) Time elapsed: 0.185 sec <<< FAILURE!
loci.formats.FormatException: Could not decompress JPEG2000 image.
mbDt, at javaximageio.stream.ImagelnputStreamimpl.checkClosed(ImagelnputStreamImpl.java:110)
mDt, atjavaximageio.stream.ImagelnputStreamImpl.close(ImagelnputStreamimpl java:857)
mbDt, at javax.imageio.stream.MemoryCachelmagelnputStream.close(MemoryCachelmagelnputStream java:173)
0 atloci.formats.services.JAlllOServicelmpl.readRaster(JAllIOServicelmpl java:179)
1  atloci.formats.codecJPEG2000Codec.decompress(JPEG2000Codec.java:296)
2 atloci.formats.tiff.TiffCompression.decompress(TiffCompression.java:279)
1 at loci.formats.tiff. TiffParser.getTile(TiffParser.java:739)
1 at loci.formats.tiff.TiffParser.getSamples(TiffParser java:982)
1 atlociformats.tiff.TiffParser.getSamples(TiffParser.java:779)
2 atloci.formats.in.MinimalTiffReader.openBytes(MinimalTiffReader.java:296)
2 atloci.formats.FormatReader.openBytes(FormatReader java:888)
2 at loci.formats.FormatReader.openBytes(FormatReader.java:859)
2 at loci.formats.utests.out. TiffWriterTest.checkimage(TiffWriterTest.java:585)
2 at loci.formats.utests.out.TiffWriterTest.testSaveBytesTiling(TiffWriterTest.java:523)

(c) Exception Failure in Test testSaveBytesTiling

Figure 2: Part of Exception Failures in bioformats

causes in 25 builds. These results indicate that test failures in a large
part of the test-failed builds have only one root cause. Thus, test fail-
ure triage in CI should be aware of this specific characteristic. Exist-
ing stack trace-based failure triage techniques fail to do so, and their
triage model tends to triage test failures into one root cause such
that it can still yield an overall good performance although it has a
poor performance on triaging test failures with multiple root causes.

2.2 Motivating Examples of Test Failures

Fig. 2 shows the exception log of three of the 62 exception failures in
a build of the project bioformats. The first line of the log includes
the signature of the test that signals the exception failure. The sec-
ond line shows the exception message that is composed of two parts,
i.e., the exception type and a developer-written message. The rest of
the lines list the exception stack trace. Fig. 3 shows the code changes
that cause the exception failures. The call tomciis.close() was in-
serted after reader.dispose() in method readImage in Fig. 3a,
causing the failure in Fig. 2a. Similarly, the calltomciis.close() was
inserted after reader.dispose() in method readRaster in Fig. 3b,
which caused the failures in Fig. 2b and 2c. In fact, the code change in
Fig. 3a caused six of the 62 exception failures, and the code change in
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public Bufferedimage readimage(InputStream in,
JPEG2000CodecOptions options) throws IOException, ServiceException {
Bufferedlmage image = reader.read(0, param);
reader.dispose();
+ mciis.close();
return image;

}
(a) Code Changes in readImage in JAIIIOServiceImpl.java

public Raster readRaster(InputStream in, JJEG2000CodecOptions
options) throws IOException, ServiceException {
Raster raster = reader.readRaster(0, param);
reader.dispose();
+ mciis.close();
return raster;

}
(b) Code Changes in readRaster in JAIIIOServiceImpl.java

Figure 3: Part of Code Changes in bioformats

Fig. 3b caused the remaining 56 exception failures. To fix the failures,
mciis.close() shouldbe called before reader.dispose (). Our ap-
proach can successfully triage the 62 exception failures into two clus-
ters with respect to the two root causes (details will be introduced in
Sec. 3.3).Itis also worth mentioning that the two root causes share the
same nature but occur in different code locations, and hence we con-
sider them as two root causes but not one root cause.

Fig. 4 presents the exception log of the two assertion failures in a
build of the project retrofit. The first line of the log includes the sig-
nature of the test that signals the assertion failure. The next five lines
report the assertion message that is composed of two parts, i.e., the as-
sertion error type and the expected and actual value in the assertion
statement. The remaining lines show the exception stack trace. Fig. 5
shows the test code of the two failed tests, and Fig. 6 shows the code
changes that cause the assertion failures. The code changes in Fig. 6a
renamed converterFactory to factory, while the code changes in
Fig. 6b renamed callbackExecutor to executor. The two renam-
ing refactorings were not consistently applied on the assertion state-
ments in the two tests in Fig. 5, which caused the failures in Fig. 4. To
fix the failures, the same renaming refactorings should be applied on
the two tests. Our approach can correctly triage the two assertion
failures into two clusters with respect to the two root causes, i.e., the
two renaming refactorings (details will be introduced in Sec. 3.4).

3 APPROACH

In this section, we first present an overview of BUILDSHERIFF, and then
introduce each step of BUILDSHERIFF in detail.

3.1 Overview

Fig. 7 presents the overview of our change-aware test failure triage ap-
proach. BUILDSHERIFF is designed to triage failed tests in each CI build
of a target project so that the failed tests with the same root cause are

put in the same cluster. BUILDSHERIFF is triggered when a CI build from

a project repository occurs. It works in three steps: triage knowledge
preparation (Sec. 3.2), exception failure triage (Sec. 3.3), and assertion
failure triage (Sec. 3.4). It first prepares triage knowledge by analyz-
ing the build log, the project source code, and the code changes from
the previous passed build. Based on the triage knowledge, it then uses
different strategies to triage exception failures and assertion fail-
ures. The key characteristic of our triage strategies is the awareness
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callbackExecutorNullThrows(retrofit2.RetrofitTest) Time elapsed: 0.029 sec <<< FAILURE!
java.lang.AssertionError:
Expecting message:
<"callbackExecutor == null">
but was:
<"executor == null">
at retrofit2. RetrofitTest.callbackExecutorNullThrows(RetrofitTest.java:1057)
at sun.reflect.NativeMethodAccessorimpl.invokeO(Native Method)

at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:50)

at org.apache.maven.surefire.booter.ForkedBooter.main(ForkedBooter.java:75)

(a) Assertion Failure in Test callbackExecutorNullThrows

converterNullThrows(retrofit2.RetrofitTest) Time elapsed: 0.002 sec <<< FAILURE!
java.lang.AssertionError:
Expecting message:
<"converterFactory == null">
but was:
<"factory == null">
at retrofit2.RetrofitTest.converterNullThrows(RetrofitTest.java: 744)
at sun.reflect.NativeMethodAccessorlmpl.invokeO(Native Method)

at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:50)

at org.apache.maven.surefire.booter.ForkedBooter.main(ForkedBooter.java:75)

(b) Assertion Failure in Test converterNullThrows
Figure 4: Assertion Failures in retrofit

@Test public void callbackExecutorNullThrows() {
try {
new Retrofit.Builder().callbackExecutor(null);
fail();
} catch (NullPointerException e,

){
assertThat(e).hasMessage("
}

“callbackExecutor == null");

(a) Code of Test callbackExecutorNullThrows

@Test public void converterNullThrows() {
try {

new Retrofit.Builder().addConverterFactory(null);
fail();
} catch (NullPointerException e

){
assertThat(e).hasMessage("
}

"converterFactory == null");

(b) Code of Test converterNullThrows
Figure 5: Test Code in retrofit

- public Builder addConverterFactory(Converter.Factory converterfactory) {
- converterFactories.add(checkNotNull(converterFactory, “converterFactory == null"));
+ public Builder addConverterFactory(Converter.Factory factory) {
+ converterFactories.add(checkNotNull(factory, “factory == null"));
return this;

(a) Code Changes in addConverterFactory

- public Builder callbackExecutor(Executor callbackExecutor) {
- this.callbackExecutor = checkNotNull(callbackExecutor, “callbackExecutor == null");
+ public Builder callbackExecutor(Executor executor) {
+ this.callbackExecutor = checkNotNull(executor, "executor == null");
return this;

(b) Code Changes in callbackExecutor
Figure 6: Part of Code Changes in retrofit

of code changes. BUILDSHERIFF is currently implemented for Java
projects that use Travis as CI service and Maven as build tool.

3.2 Triage Knowledge Preparation

BUILDSHERIFF has three steps to prepare the triage knowledge for ex-
ception failures and assertion failures. The triage knowledge is three-
fold: test failures (i.e., test signature, exception message, stack trace,
and test code), code changes at the file, method and field level that
potentially cause the test failures, and file dependencies that capture
the code change impacts that also potentially cause the test failures.
Test Failure Analysis. As the build log contains a well-formatted
summary of test failures, we first use regular expression matching to
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Figure 7: Approach Overview of BUILDSHERIFF

extract two sets of failed tests that respectively signal exception fail-
ures and assertion failures, and parse the test signature sig (i.e., class
name and test method name) and the line number of the test code
that signals the failure for each of the failed tests. If no test failure
occurs (i.e., the build is not a test-failed build), BUILDSHERIFF stops.

Then, for a failed test signaling an exception failure, we use its test
signature to locate and parse the exception message msg and the stack
trace st from the build log. The exception message contains the ex-
ception type and a developer-written message, while the stack trace
consists of an ordered list of frames (i.e., methods) that were active
on the call stack before the exception occurred. Generally, if two ex-
ception failures share the same root cause, they are more likely to be
similar in the exception message and the stack trace. Differently, for
a failed test that signals an assertion failure, we do not extract the as-
sertion message and the stack trace because of their low discrimina-
tion. Specifically, the assertion messages in the build log mostly con-
tain the same error type (e.g., java. lang.AssertionError), while
the stack traces mostly consist of similar methods that do not belong
to the target project but are assertion-related methods from the test-
ing infrastructure (e.g., JUnit) as the methods before the assertion
statement in the tests successfully returned. In that sense, assertion
failures that have different root causes could have similar assertion
messages and stack traces. For example, all the frames except for the
first frame in the two stack traces in Fig. 4 are methods from Java
reflection, JUnit and Maven, and are exactly the same, although the
two assertion failures have different root causes.

Finally, for a failed test that signals an assertion failure, we obtain
the test method from the project source code according to its test sig-
nature, and tailor the test code tc from the first line of the test method
to the line number of the test code that signals the assertion failure.
In other words, only the executed test code is included in tc because
the unexecuted test code is actually not related to the test failure.
However, for a failed test signaling an exception failure, we do not tai-
lor the test code as the triage knowledge. The reason is that tests sig-
naling exception failures, compared to tests signaling assertion fail-
ures, are mostly partially executed, and hence the executed test code
contains less informative knowledge for exception failure triage.

Formally, we define an exception failure x, in the exception fail-
ures X, of a build as a 3-tuple (sig, msg, st), and define an assertion
failure x, in the assertion failures X, of a build as a 2-tuple (sig, tc).

Code Change Analysis. Motivated by the fact that root causes of
test failures are often introduced by code changes [75], we consider
code changes as important triage knowledge. Instead of considering
code changes from the previous build, we consider code changes from
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the previous passed build because all code changes in previous con-
secutive failed builds can potentially cause the test failures in the cur-
rent build. To this end, we use the code differencing tool CLDIFF [33]

to obtain the changed source code files 7., methods M, and fields

D¢ from the previous passed build to the current build.

File Dependency Analysis. Code affected by the code changes
can also potentially cause test failures. Thus, we use code dependen-
cies to capture such code change impacts and sever as the triage knowl-
edge. We model code dependencies at the file-level rather than method-
level granularity for two reasons. On one hand, we are inspired by re-
cent studies on practical regression test selection [24, 42], which show
that better results can be achieved by selecting tests at a coarser (file-
level) compared to a finer (method-level) granularity of code depen-
dencies. On the other hand, it is more efficient to analyze file depen-
dencies than method dependencies, which is important for practical
failure triage in CI. Specifically, we adopt an incremental way to an-
alyze file dependencies. We first construct a file dependency graph
G = (V, &) for the target project when the first test-failed build oc-
curs. Each node in “V denotes a source code file, and each edge in &
denotes a usage dependency between two files. A file can use all files
from its own package, or files from other packages via import state-
ment or fully qualified name. Thus, we use JDT to parse each source
code file, i.e., to parse its own package and import statements to iden-
tify potentially used files and establish usage dependencies. Here we
do not analyze file usages with fully qualified name due to its heavy-
weight analysis cost and its uncommon adoption. Note that this step
is a one-time job for the target project. Then, we update G for each
subsequent test-failed build by parsing changed (i.e., deleted, added,
and modified) files from the previous test-failed build.

3.3 Exception Failure Triage

BUILDSHERIFF achieves the triage of exception failures X, in a build
by a pipeline of the following three strategies.

S.: Complexity of Code Changes. Generally, the higher com-
plexity of code changes in a build, the higher chance of causing test
failures, and the larger number of root causes for test failures. How-
ever, Cl requires developers to frequently merge their code to find er-
rors as early as possible. Therefore, code changes in a build are mostly
not complex, and as revealed by our study (Sec. 2.1), a large part of test-
failed builds have only one root cause for test failures. Motivated by
these observations, we propose a strategy S to use the complexity
of code changes to determine whether X, has one root cause or not.
Here, we use the number of changed methods (i.e., | M.|) as the indi-
cator of code change complexity, and consider X, as having one root
cause if | M| is lower than a threshold A, (i.e., |/Mc| < A¢). Thus, if
IMc| < Ae is satisfied, BUILDSHERIFF triages all exception failures
into one cluster; otherwise, it uses the next strategy in the pipeline.

S2: Change-Aware Stack Trace Similarity. A stack trace is an
ordered list of frames on the call stack when an exception occurred.
Each frame represents a method, and records its enclosing file name.
A stack trace carries important information for debugging [59]. We
propose a new change-aware stack trace similarity metric based on
the insight that a higher weight should be given to the frames that are
closer to code changes because such frames are more likely to be
affected by code changes and be blamed for the exception. Based
on this metric, we propose a clustering strategy S to triage X.
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Based on the above insight, we first define the distance of a frame
m to code changes, as formulated in Eq. 1, where f,, denotes the en-
closing file of m, and dt (fy, fe, G) denotes the distance of f;, to
a changed file f. € ¥ on the file dependency graph G. Basically,
dt(m) is zero if m itself is changed, and one if the enclosing file of m
is changed; otherwise, dt(m) is measured by the minimum distance
of fi, to all changed files on G if f;;, reaches some changed file,
and a large value mDt, if fp, does not reach any changed file.

0, me M.

_ g fm € Fe
dt(m) = 1+ minfcegccdt/(fm,fc,g) fm reach some f;, )

mDt, otherwise

Then, we define the weight (or importance) of a frame m based on
the distance to code changes dt(m), as formulated in Eq. 2, where c,
is a coefficient for the distance to code changes. The smaller the dis-
tance to code changes, the higher the weight.

w(m) = e~ cerdtim) @
Then, we define the similarity of two stack traces st; = { m%, mé, o}
and sty = {m%, m%, ...} using the Serensen-Dice index [18] (i.e., Eq. 3).
2% Ymestnst, wm)

Zmestl w(m) + Zmestg w(m)

sim(sty, st2) = 3)
Finally, we apply the single-linkage agglomerative clustering tech-
nique [16] to cluster exception failures X, based on the similarity of
the stack traces of exception failures. In other words, we use the max-
imum stack trace similarity of all exception failure pairs between
two clusters as the cluster distance, as formulated in Eq. 4, where X, 3
and Xg are two clusters of exception failures; and we use a cluster
distance threshold dt; as a stopping criterion for clustering.

dt(Xel, (\’3) = max,1 eX,},xZexg%Sim(x; .St, xg.st) (4)

When the stack trace size (i.e., the number of frames) of an excep-
tion failure is small, the stack trace contains less informative knowl-
edge for failure triage. Hence, we use S2 if the maximum stack trace
size of the exception failures is larger than a size threshold sizeg; (i.e.,
maxy, e X, |Xe.st| > sizesy); otherwise, we use the next strategy.

Sg: Exception Message Similarity. An exception message con-
tains the exception type and a developer-written message, which po-
tentially describes the root cause, symptom, or handling hint of the

exception. Intuitively, two exception failures having the same root cause

are likely to have similar exception messages. Hence, we design a clus-
tering strategy S> based on exception message similarity to triage X.
First, we define the similarity of two exception messages msg; and
msgo based on their Levenshtein distance at the token level, as for-
mulated in Eq. 5, where t(msg) denotes a sequence of tokens in msg
split by white space, and dt(t(msg;), t(msgz)) denotes the Leven-
shtein distance, i.e., the minimum number of token-level edits (i.e.,
insertion, deletion and substitution) to change t(msg;) into t(msgz).

maxLength — dt(t(msg ), t(msgz))
maxLength (5)
maxLength = max(|t(msg1)|, [t(msg2)|)

sim(msg1, msgz) =

We then apply the single-linkage agglomerative clustering tech-
nique to cluster exception failures X, based on the similarity of the
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exception messages of exception failures (i.e., Eq. 6). We use a cluster
distance threshold dt;s4 as a stopping criterion for clustering.

dr(X}, Xez) =max,iexi y2 Exgsim(xé.msg, xg.msg) (6)

Example. Given exception failures in Fig. 2, BUILDSHERIFF adopts
S2 to achieve the triage. The distance of each frame to code changes is
highlighted in the left of each frame in Fig. 2. As explained in Sec. 2.2,
the exception failures in Fig. 2a and 2b had different root causes, even
though their stack traces look similar. On the other way around, the ex-
ception failures in Fig. 2b and 2c had the same root cause, even though
their stack traces look dissimilar. BUILDSHERIFF correctly triages them
due to our consideration of the distance of each frame to code changes
in computing stack trace similarity. In detail, BUILDSHERIFF gives the
highest weight to the frame of readImage and readRaster because
they are changed (as shown in Fig. 3). With such weighted similarity
measure, BUILDSHERIFF successfully triages the failures in Fig. 2a and
2b into two clusters, as the stack trace in Fig. 2a contains readImage
but not readRaster and the stack trace in Fig. 2b contains readRaster
but not readImage;and it also correctly triages the failures in Fig. 2b
and 2c into the same cluster, as both stack traces in Fig. 2b and 2c con-
tain readRaster. The state-of-the-art method [15] fails on these cases.

3.4 Assertion Failure Triage

BUILDSHERIFF achieves the triage of assertion failures X in a build
by a pipeline of the following two strategies.

SL: Complexity of Code Changes. Similar to exception failure
triage, we propose a strategy S} to use the complexity of code changes
to determine whether X, has one root cause or not. We regard X, as
having one root cause if the number of changed methods (i.e., |Mc|)
islower than a threshold A, (ie., IMc| < Ag). Thus,if M| < Agis
satisfied, BUILDSHERIFF triages all the failed tests into one cluster;
otherwise, it uses the next strategy in the pipeline.

S2: Change-Aware Test Code Similarity. The test code tc of an
assertion failure is the executed code when the assertion failure oc-
curred. Intuitively, a higher test code similarity between two asser-
tion failures, a higher likelihood that they share the same root cause.
Similar to our change-aware stack trace similarity metric, we design
a change-aware test code similarity metric based on the insight that
a higher weight should be assigned to code tokens that are closer to
code changes as such code tokens are more likely to be affected by
code changes and be blamed for the assertion failure. Using this met-
ric, we develop a clustering strategy S to triage X,.

Based on the above insight, we first tokenize test code tc into a list
of code tokens {t1, t2, ...}. Then, we define the distance of a code to-
ken t to code changes, as formulated in Eq. 7, where f; denotes the
enclosing file of ¢t if ¢ corresponds to the name of a method or a
field, and dt (f;, fe, G) denotes the distance of f; to a changed file
fe € F¢ on the file dependency graph G. Basically, dt(t) is zero if ¢
is changed and corresponds to the name of a method or a field, and
one if f; is changed; otherwise, dt(t) is measured by the minimum
distance of f; to all changed files on G if f; reaches some changed
file, and a large value mDt, if f; does not reach any changed file.

0, te McUD,

] ft €Fe
di(t) = 1+ minfceg:cdt/(ft,fc, G) fi reach some f. @

mDt, otherwise
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Then, we define the weight (or importance) of a code token ¢ based
on the distance to code changes dt(t), as formulated in Eq. 8, where ¢,
is a coefficient for the distance to code changes.

W(t) — e—cu*dt(t) (8)

...}and
...} using the Sgrensen-Dice index [18] (i.e., Eq. 9).

Then, we define the similarity of two test code tc; = {tll, tzl,
teg = {12, 12,

2% Y rereynte, W(b)

Direte, W) + Xiere, W(t) ©)

sim(tcy, teg) =

We finally use the single-linkage agglomerative clustering tech-
nique to cluster assertion failures X, based on the similarity of the
test code of exception failures (i.e., Eq. 10). We use a cluster distance
threshold dt;. as a stopping criterion for clustering.

dt(X;,Xg) = max,icx1 y2 exésim(xé.tc, xi.tc) (10)

Example. Given assertion failures in Fig. 4, BUILDSHERIFF adopts
S2 to realize the triage. The code tokens of the test in Fig. 5a are “try”,
“new”, “Retrofit”, “Builder”, “callbackExecutor”, “null”, “fail”, “catch”,
“NullPointerException”, “e”, “assertThat”, “e”, “hasMessage” and “call-
backExecutor == null”. “Retrofit”, “Builder” and “callbackExecutor”
respectively have a distance of 1, 1 and 0 to code changes, and other
code tokens have a distance of mD#, to code changes. Similarly, “Retro-
fit”, “Builder” and “addConverterFactory” in Fig. 5b respectively have
a distance of 1, 1 and 0 to code changes. As introduced in Sec. 2.2,
the assertion failures in Fig. 4 had different root causes, even though
their failed tests in Fig. 5 look similar. BUILDSHERIFF successfully
triages them because of our consideration of the distance of each test
code token to code changes in computing test code similarity. Specif-
ically, BUILDSHERIFF gives the highest weight to “callbackExecutor”
and “addConverterFactory” because the corresponding methods are
changed (as shown in Fig. 6). As the test code token with the highest
weight is different in the two tests, BUILDSHERIFF correctly triages
the two failures into two clusters with weighted similarity measure.

3.5 Usage Scenario of Triage Results

After triaging test failures, BUILDSHERIFF presents developers with a
set of clusters, and notifies developers that each cluster has a set of test
failures whose root cause is considered as the same. For each test fail-
ure in a cluster, BUILDSHERIFF provides developers with the distance
information to code changes (e.g., Fig. 2), and tells developers that
methods on stack traces or methods in test code that have small dis-
tance to code changes can be the starting point to locate root causes.

Then, developers can use the triage results in two potential sce-
narios. Usage Scenario 1: Developers are required to choose the first
test failure in each cluster as the representative to find and fix root
causes, and rerun all the tests. When some root causes are not fixed (i.e.,
some tests still fail), developers need to inspect all the remaining test
failures in each cluster. Usage Scenario 2: Instead of inspecting all
the remaining test failures in each cluster when some root causes
are not fixed by inspecting the first test failure in each cluster, de-
velopers need to inspect the first test failure of the remaining test
failures in each cluster, rerun all the tests, and iterate this process
until all the root causes are fixed (i.e., all the tests pass).
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The differences between the two usage scenarios are that more test
failures are inspected by developers in Usage Scenario 1 than in Us-
age Scenario 2, but more executions of all the tests are needed in Us-
age Scenario 2 than in Usage Scenario 1 (where at most two ex-
ecutions of all the tests are needed). In fact, the lower bound on the
number of inspected test failures is achieved in Usage Scenario 2
at the cost of more executions of all the tests. In other words, the
two usage scenarios have a different tradeoff between the number
of inspected test failures and the number of executions of all the
tests. Practical usage scenarios can be in-between Usage Scenario
1 and Usage Scenario 2. In that sense, the significance of BuiLpSH-
ERIFF is that it reduces test failure diagnosis cost for CI developers
by reducing the number of inspected test failures or the number of
executions of all the tests through effectively triaging test failures.

4 EVALUATION

We have implemented BUILDSHERIFF in 17.0K lines of Java code, and
have released the code and data of BUILDSHERIFF at our website [1].

4.1 Evaluation Setup

To evaluate the effectiveness and efficiency of BUILDSHERIFF, we de-
signed our evaluation to answer the following research questions.

o RQ4: How is the effectiveness of BUILDSHERIFF in triaging test fail-
ures, compared with the state-of-the-art approaches? (Sec. 4.2)

e RQ5: How is the efficiency of BUILDSHERIFF in triaging test fail-
ures, compared with the state-of-the-art approaches? (Sec. 4.3)

e RQ6: How is the contribution of each triage strategy in BUiLDSH-
ERIFF to the achieved effectiveness of BUILDSHERIFF? (Sec. 4.4)

o RQ7:How is the sensitivity of each parameter in BUILDSHERIFF to
the effectiveness of BUILDSHERIFF? (Sec. 4.5)

Data Set. We used the 100 broken builds with exception failures
and the 100 broken builds with assertion failures from RQ3 of our em-
pirical study in Sec. 2.1 as the data set for our evaluation. The ground
truth has already been constructed during the analysis of RQ3.

Comparison Approaches. For RQ4 and RQ5, we selected three
state-of-the-art approaches: i) 1IFRAME, which triages crash reports us-
ing the top frame in stack traces. We selected it because it is practi-
cally used in Mozilla [17]. ii) 1F1LE, which triages crash reports using
the name of the source file in which the top frame is defined. We se-
lected it as it achieved the highest triage precision in a recent empiri-
cal study [12]. iii) REBUCKET, which triages crash reports based on the
number of functions in two stack traces, the distance of those func-
tions from the top frame, and the offset distance between the matched
functions [15]. We selected it as it outperformed the triage method in
Microsoft’s Windows Error Reporting system. Moreover, given the
results in RQ3, we developed one naive method 1CLUSTER, which
simply puts all test failures into a single cluster.

Evaluation Metrics. To comprehensively evaluate the triage ef-
fectiveness, we used the number of builds whose failures were cor-
rectly triaged (referred to as C.B.) as an overall indicator of triage ef-
fectiveness, used the number of executions of all tests a developer
needs to run (referred to as TE.) and the number of test failures a de-
veloper needs to inspect (referred to as TF) in the two usage scenar-
ios discussed in Sec. 3.5 to reflect the effort saving for a developer
when using BUILDSHERIFF, and used the number of missed root
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Table 1: Effectiveness Comparisons to the State-of-the-Art on Exception Failures

Approach CB. TE1 TF1 TE2 TF2 MR Purity IP. FM. Rand Jac. F&M. Ent. CE. MIL VI ED. BPre BRec. BFM.
1CLUSTER 82 118 263 124 124 18 0.926 1.000 0.941 0.879 0.879 0.960 0.187 0.000 0.000 0.187 1.980 0.916 1.000 0.943
1FILE 64 108 348 109 291 8 0.966 0.854 0.865 0.754 0.734 0.893 0.076 0.493 0.111 0.570 2.980 0.964 0.835 0.849
1FRAME 62 107 418 108 361 7 0.968 0.816 0.829 0.718 0.698 0.923 0.070 0.649 0.118 0.719 3.680 0.967 0.801 0.817
REBUCKET 63 107 414 108 357 7 0.968 0.819 0.831 0.725 0.705 0.928 0.070 0.639 0.118 0.709 3.650 0.967 0.806 0.820
BUILDSHERIFF 94 104 130 105 128 4 0.984 0.991 0.981 0.964 0.945 0.986 0.042 0.018 0.145 0.060 1.280 0.981 0.991 0.981
Table 2: Effectiveness Comparisons to the State-of-the-Art on Assertion Failures
Approach C.B. TE1 TF1 TE2 TF2 MR Purity LP. FM. Rand Jac. F&M. Ent. CE. MIL VI ED. BPre. B.Rec. BFM.
1CLUSTER 75 125 148 137 137 25 0.855 1.000 0.893 0.756 0.756 0.997 0.344 0.000 0.000 0.344 1.480 0.854 1.000 0.894
1FILE 54 120 218 130 218 20 0.876 0.878 0.819 0.603 0.581 0.941 0.288 0.362 0.056 0.650 2.290 0.875 0.868 0.811
1FRAME 46 116 290 124 290 16 0901 0.784 0.761 0.518 0.460 0.958 0.227 0.636 0.118 0.863 2.990 0.899 0.776 0.756
REBUCKET 58 116 236 120 229 16 0910 0.844 0.815 0.610 0.561 0.983 0.206 0.431 0.138 0.638 2.390 0.909 0.842 0.815
BUILDSHERIFF 89 101 156 101 156 1 0.988 0.951 0.955 0.915 0.806 0.947 0.032 0.124 0.313 0.155 1.650 0.988 0.948 0.954

causes when a developer inspects one test failure per cluster (re-
ferred to as M.R.) to measure the impact of ineffective triage. Further,
as the goal of BUILDSHERIFF is to produce a set of clusters of test fail-
ures whose root cause is considered as the same, we need to compare
the distance between the clusters generated by BUILDSHERIFF and
the ground-truth clusters manually constructed. To this end, we
used all the five families of clustering evaluation metrics in Amigd
et al. [4] as different families capture different perspectives of four
clustering qualities, i.e., cluster homogeneity (a cluster should not
mix test failures with a different root cause), cluster completeness
(test failures with the same root cause should be grouped into the
same cluster), rag bag (introducing noise into a noisy cluster is less
harmful than introducing noise into a clean cluster), and cluster size
versus quantity (a small error in a big cluster should be preferable
to a large number of small errors in small clusters). We briefly list
the five families as follows, and the detailed definition and the sat-
isfaction level of the four qualities can be found in Amigo et al. [4].

o Metrics based on set matching: Purity, Inverse Purity (LP.), and their
combination F-Measure (FM.).

o Metrics based on counting pairs: Rand Statistic (Rand), Jaccard Co-
efficient (Jac.), and Folkes and Mallows (F.&M.).

e Metrics based on entropy: Entropy (Ent.), Class Entropy (C.E.), Mu-
tual Information (M.L), and Variation of Information (V.L).

e Metric based on edit distance: Edit Distance (E.D.).

e Metrics based on BCubed: BCubed Precision (B.Pre.), BCubed Recall
(B.Rec.), and their combination BCubed F-Measure (B.FM.).

For Ent., TE., TF., M.R., C.E., V.I and E.D., the lower the better, and for
the others, the higher the better.

4.2 Effectiveness Evaluation (RQ4)

Table 1 shows the results of 1CLUSTER, 1FILE, IFRAME, REBUCKET and
BuILDSHERIFF with respect to the 20 effectiveness metrics on the 100
broken builds with exception failures. TE. and TF. for Usage Sce-
nario 1 are denoted as TE.1 and TF.1, while TE. and TF. for Usage
Scenario 2 are denoted as TE.2 and TF.2. The naive method 1Crus-
TER achieved worse performance on 16 of the 20 metrics than BurLp-
SHERIFF. Specifically, with 1CLUSTER in Usage Scenario 1, devel-
opers would inspect 263 of the 1,903 test failures and run 118 execu-
tions of all tests, which are 81.5% and 13.5% more than with BuiLD-
SHERIFF. In other words, BUILDSHERIFF would save 81.5% of the test
failure inspection effort and 13.5% of the test execution effort. With
1CLUSTER in Usage Scenario 2, developers would inspect 124 test

failures and run 124 executions of all tests, which are 3.1% less and
18.1% more than with BUILDSHERIFF. In other words, BUILDSHERIFF
would save 18.1% of the test execution effort at the cost of 3.1% more
test failure inspection effort. Besides, developers would miss 18 of
the 124 root causes when only inspecting one test failure per clus-
ter with 1CLUSTER, which is 350.0% more than with BUILDSHERIFF.

On the other hand, the state-of-the-art methods 1FIiLE, 1FRAME
and REBUCKET had similar results on all the metrics except for TF.1,
TFE2, C.E., VI and E.D. on which 1FiLE achieved better results, while
BUILDSHERIFF outperformed them on all the metrics. In particular,
BUILDSHERIFF significantly improved the best of the three state-
of-the-art methods on all the metrics except for TE.1, TE.2, Purity,
F.&M. and B.Pre., i.e., by 46.9% on C.B., 62.6% on TF.1, 56.0% on
TF2,42.9% on M.R., 16.0% on LP., 13.4% on FM., 27.9% on Rand, 28.7%
on jac.,40.0% on Ent., 96.3% on C.E., 22.9% on M.L,, 89.5% on V.I,57.0%
on E.D., 18.7% on B.Rec., and 15.5% on B.FM..

Table 2 shows the results on the 100 broken builds with assertion
failures. Compared to 1CLUSTER, BUILDSHERIFF achieved better per-
formance on 13 of the 20 metrics. Although developers would in-
spect 148 and 137 of the 490 test failures with 1CLUSTER in Usage
Scenario 1 and 2, which are 5.1% and 12.2% less than with BuiLp-
SHERIFF, developers would run 125 and 137 executions of all tests,
which are 12.8% and 35.6% more than with BUILDSHERIFF. In other
words, BUILDSHERIFF would save 12.8% and 35.6% of the test execu-
tion effort at the cost of 5.1% and 12.2% more test failure inspection
effort. Besides, developers would miss 25 of the 137 root causes
when only inspecting one test failure per cluster with 1CLUSTER,
which is 2400.0% more than with BUILDSHERIFF.

On the other hand, 1F1LE and REBUCKET achieved similar results
but had better results than 1FRAME on most of the metrics, while
BUILDSHERIFF outperformed 1FILE,1IFRAME and REBUCKET on all
the metrics except for F&M.. In particular, BUILDSHERIFF signif-
icantly improved the best of the three state-of-the-art methods
on all the metrics except for Purity, LP., F&M., B.Pre. and B.Rec.,
i.e., by 53.4% on C.B., 12.9% on TE.1, 28.4% on TF.1, 15.8% on TE.2,
28.4% on T.F.2, 93.8% on M.R., 16.6% on FM., 50.0% on Rand, 38.7%
on Jac., 84.5% on Ent., 65.7% on C.E., 126.8% on M.L, 75.7% on
VI, 27.9% on E.D., and 17.1% on B.FM..

These results demonstrate that i) the naive method would miss the
highest number of root causes when developers only inspect one
test failure per cluster although it could achieve a relatively high
number of correctly triaged builds, and hence advanced failure
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Table 3: Contributions of Each Strategy in BUILDSHERIFF on Exception Failures

Approach CB. TE1 TF1 TE2 TF2 MR Purity IP. FM. Rand Jac. F&M. Ent. CE. MIL VI ED. BPre BRec. BFM.
1FILE 22 50 185 51 128 8 0.919 0.863 0.838 0.699 0.645 0.844 0.182 0.462 0.220 0.644 3.214 0.914 0.842 0.825
1FRAME 21 49 215 50 158 7 0.924 0.825 0.808 0.664 0.614 0.887 0.166 0.611 0.236 0.777 3.929 0.921 0.807 0.798
REBUCKET 22 49 212 50 155 7 0.936 0.846 0.835 0.706 0.658 0.908 0.142 0.540 0.260 0.683 3.571 0.933 0.827 0.824
Si 31 44 112 45 111 2 0.974 0.865 0.874 0.796 0.744 0.922 0.060 0.433 0.342 0.493 2.643 0.973 0.856 0.868
Naive Si 19 49 190 50 134 7 0.930 0.820 0.808 0.657 0.594 0.879 0.154 0.620 0.248 0.775 3.333 0.927 0.798 0.797
Simple Sze 26 45 115 46 114 3 0.962 0.845 0.854 0.747 0.688 0.897 0.084 0.494 0.318 0.578 2.738 0.961 0.829 0.843
SZ 30 48 73 50 70 6 0.927 0.962 0.923 0.832 0.797 0.929 0.168 0.104 0.234 0.272 1.786 0.922 0.953 0.918
Si + Si 31 44 111 45 110 2 0.988 0.865 0.885 0.815 0.766 0.940 0.024 0.433 0.378 0.457 2.619 0.988 0.856 0.879
S%l 20 49 191 49 191 7 0.928 0.806 0.823 0.673 0.589 0.799 0.152 0.646 0.250 0.799 5.619 0.926 0.772 0.794
BUILDSHERIFF 38 44 70 45 68 2 0.979 0.979 0.968 0.947 0.900 0.987 0.056 0.043 0.346 0.099 1.619 0.975 0.979 0.969
Table 4: Contributions of Each Strategy in BUILDSHERIFF on Assertion Failures
Approach CB. TE1 TF1 TE2 TF2 MR Purity IP. FM. Rand Jac. F&M. Ent. CE. MI VI ED. B.Pre. BRec. B.FM.
1FILE 17 64 89 74 89 20 0.718 0.942 0.753 0.439 0.376 0.981 0.655 0.139 0.128 0.794 2.273 0.715 0.940 0.754
1FRAME 18 60 95 68 95 16 0.774 0.904 0.769 0.486 0.336 0.976 0.516 0.220 0.268 0.736 2.364 0.771 0.902 0.770
REBUCKET 22 51 106 55 106 7 0.823 0.916 0.810 0.566 0.395 0.978 0.416 0.198 0.367 0.614 2.341 0.820 0.913 0.812
Naive Sza 24 49 115 49 115 5 0.989 0.779 0.832 0.619 0.186 0.868 0.023 0.524 0.760 0.547 2.818 0.989 0.776 0.832
Simple Sfl 28 46 109 46 109 2 0.962 0.850 0.866 0.696 0.404 0.849 0.089 0.363 0.694 0.452 2.568 0.963 0.844 0.861
Si 25 48 106 49 106 0.910 0.865 0.839 0.634 0.366 0.882 0.220 0.340 0.563 0.561 2.568 0.910 0.855 0.833
SSE 25 54 102 61 102 10 0.848 0.934 0.843 0.679 0.470 0.910 0.344 0.177 0.439 0.521 2.364 0.848 0.928 0.842
Sze -> 532 29 53 97 60 97 0.865 0.962 0.875 0.748 0.555 0.941 0.313 0.126 0.470 0.439 2.318 0.865 0.952 0.870
BUILDSHERIFF 33 45 100 45 100 1 0.973 0.888 0.898 0.808 0.559 0.879 0.072 0.282 0.712 0.353 2.477 0.973 0.882 0.895
triage is needed; and ii) the state-of-the-art stack trace-based failure 4.4 Ablation Study (RQG)

triage is not well applicable to triage exception and assertion fail-
ures in CI, while BUILDSHERIFF is capable of achieving this goal.

We further analyzed the intersections among the correctly triaged
builds by these methods. For the builds with exception failures, 82, 61,
58 and 59 of the correctly triaged builds by 1CLUSTER, 1FILE, 1IFRAME
and REBUCKET were also correctly triaged by BUILDSHERIFF; and 8
of the correctly triaged builds by BUILDSHERIFF were not correctly
triaged by any other method. Similarly, for the builds with assertion
failures, 66, 48, 41 and 52 of the correctly triaged builds by 1CLUSTER,
1F1LE, 1IFRAME and REBUCKET were also correctly triaged by BuiLp-
SHERIFF; and 13 of the correctly triaged builds by BUILDSHERIFF
were not correctly triaged by any other method.

Summary. BUILDSHERIFF significantly outperformed the naive
method and the best of the state-of-the-art methods on 13+ of the 20
metrics in triaging exception failures and assertion failures in CI
builds. BUILDSHERIFF achieved a test execution effort saving of up
to 35.6% at the cost of up to 12.2% more test failure inspection effort
when compared to 1CLUSTER, and achieved a test execution effort
saving of up to 15.8% and a test failure inspection effort saving of
up to 62.6% when compared to the state-of-the-art methods.

4.3 Efficiency Evaluation (RQ5)

We analyzed the average end-to-end time overhead of the five triage
methods over the 200 broken builds. 1CLUSTER, 1FILE, 1IFRAME, RE-
BuckEeT and BUILDSHERIFF respectively took 0.01, 0.10, 0.10, 0.13 and
1.61 seconds to triage a build. We excluded the time overhead of con-
structing the file dependency graph (which on average took 15.48 sec-
onds for each project) from the time overhead of BUILDSHERIFF as it
was a one-time job for each project. Instead, BUILDSHERIFF took 0.54
seconds to update the file dependency graph. While being the slow-
est due to code change analysis, BUILDSHERIFF is still practical for CIL.

Summary. BUILDSHERIFF took 1.61 seconds to triage test failures
in a CI build, which was acceptable for practical usage in CI.

As BUILDSHERIFF adopts three strategies for triaging exception fail-
ures and two strategies for triaging assertion failures, we broke down
the broken builds with respect to the strategies that triaged them. 58
of the 100 broken builds with exception failures were triaged by S.,
and 56 of them were correctly triaged; 28 were triaged by $2, and 25 of
them were correctly triaged; and 14 were triaged by $2, and 13 of them
were correctly triaged. 56 of the 100 broken builds with assertion
failures were triaged by S, and all of them were correctly triaged; and
44 were triaged by 82, and 33 of them were correctly triaged. These re-
sults demonstrate that each strategy contributes to the effectiveness
of BUILDSHERIFF. As S. and S}, are not related to stack traces and thus
can also be used in combination with 1FILE, IFRAME and REBUCKET, we
used the 42 broken builds with exception failures that were not triaged
by S to further investigate the advantage of $2 and $2, and used the
44 broken builds with assertion failures that were not triaged by SL
to further investigate the advantage of S2.

Table 3 reports the results of 1FILE, IFRAME, REBUCKET, BUILDSH-
ERIFF and its variants with respect to the 20 metrics on the 42 broken
builds with exception failures. We can observe that if we only used $2
(i.e., the fifth row in Table 3), S% still outperformed 1F1LE, IFRAME and
REBUCKET on all metrics thanks to its consideration of code changes,
but achieved worse results than a pipeline combination of $2 and $3
(i.e., the last row). If we gave the same weight to each frame in a stack
trace (i.e., Naive S2 in the sixth row), Naive S had a degradation on
all metrics, compared to S2. If we only distinguished whether a frame
was changed or not without considering change impacts (i.e., Simple
S2 in the seventh row), Simple S2 achieved better results than Naive
$2 but had worse results than S2. These results show the advantage
of considering code changes and their impacts during stack trace sim-
ilarity measure. Besides, if we only used S (i.e., the eighth row), $3
achieved worse results than $2 and a pipeline combination of 2 and
$2 on most of the metrics. If we adopted a weighted combination of
S2 and S? by equally weighting stack trace similarity and exception



ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Chen Zhang, Bihuan Chen, Xin Peng, and Wenyun Zhao

The Number of Triaged Builds

The Number of Correctly Triaged Builds

8 100 (]
3 8
= Correcty Tiaged = corecty Traged | 2 2
= incorrectly Triaged @ = Incorrectly Triaged @ w 2 %
E 28 3
3 & & %
H g g
° g 2
g [ [
2 ) e
£ g g
g 3 S
3 S w0 S w
H 5 5
5 5 3
2 2 g
P £ 2 € 20
2 5 5
= E z
A P
2 2
S S
1 ) s s 10 035 ok 075 oo 125 10 175 200 os o5 o7 o5 o
(b) Aa (c) ce (d) dts;
» o
410 g0 410
2 o 2
MMMW a e 2 W 3
= °
T w0 ) B w0
3 3 &
2 2 3
£ E £
> 60 ) > 60
g 8
g g 4
S 5 s
S 8w S 4
5 2 b
5 5 2
8 3 2
€ 20 € 2 € 2
] 5 ]
2 2 2
2 2 2
£ o 3 £ o
§ 1o % ) ) 5o o6 o7 s o 035 obo o35 1o 135 150 175 250 o7 ) o
(e) sizess () dtmsg 8) ca (h) dtsc

Figure 8: Results of Parameter Sensitivity Analysis

message similarity (i.e., $2 + S in the ninth row), $2 + 82 suffered a
degradation on most of the metrics. These results indicate the advan-
tage of combining $2 and S? in a pipeline. Further, if we adopted $2
from assertion failure triage (i.e., the tenth row), S(Z2 had the worst
results on most of the metrics. It demonstrates the rationality of not
considering test code similarity for exception failure triage.

Table 4 reports the results of 1FILE, 1IFRAME, REBUCKET, BUILDSH-
ERIFF and its variants with respect to the 20 metrics on the 44 broken
builds with assertion failures. We can see that S2 (i.e., the last row in
Table 4) outperformed 1F1LE, 1IFRAME and REBUCKET on all metrics
except for TF.1, TF.2, 1P, F&M., C.E., E.D. and B.Rec.. It shows that stack
traces provide a limited triage capability for assertion failure. If we
gave the same weight to each test code token (i.e., Naive S2 in the fifth
row), Naive Sz had a degradation on 16 of the 20 metrics, compared
to $2. If we only distinguished whether a test code token was changed
or not without considering change impacts (i.e., Simple S2 in the sixth
row), Simple S2 achieved better results on 15 of the 20 metrics than
Naive S but had worse results on all metrics than $2. These results
demonstrate the advantage of considering code changes and their
impacts during test case similarity measure. Moreover, if we adopted
$2, 82 and a pipeline combination of $2 and S2 from exception fail-
ure triage (i.e., the seventh to ninth rows), they had worse results
on 14 of the 20 metrics. It indicates a stronger capability of test code
than stack traces and assertion messages for assertion failure triage.

Summary. Each triage strategy contributes to the effectiveness
of BUILDSHERIFF in triaging exception and assertion failures.

4.5 Parameter Sensitivity Analysis (RQ7)

Each triage strategy in BUILDSHERIFF has some configurable param-
eters. We tuned these parameters in three ways. For A, in S}? and A,
in S}, we configured them from 1 to 10 by a step of 1 to evaluate their
impact on the triage results of S} and S}. The results are reported in
Fig. 8a and 8b, where the x-axis denotes the value of A, and A4, and
the y-axis denotes the number of correctly/incorrectly triaged builds
by S and S}. As A, and A, increased, both the number of correctly
and incorrectly triaged builds increased. As S} and S}, are desired to
achieve alow number of incorrectly triaged builds so that other strate-
gies can be tried, a small value of 7 and 3 was set to A, and A,.

For ce, dts; and sizes; in S%, dtmsg in Sg, and ¢, and dt;¢ in S‘é, we
configured c, and ¢, from 0.1 to 2 by astep of 0.1, dts¢, dtmsg and dtyc
from 0.51 to 1.0 by a step of 0.01, and sizes; from 1 to 50 by a step of 1
to evaluate their impact on the triage results of BUILDSHERIFF. Here
Ae and A, was fixed to 7 and 3. Parameters in S2 and S3 were tuned to-
gether, and 2.5 million (i.e., 20 X 50 X 50 X 50) configurations were ran
to obtain the optimal configuration. Similarly, 1000 (i.e., 20 X 50) con-
figurations were ran to obtain the optimal configuration of the two
parameters in S2. The results are shown in Fig. 8c-8h, where the x-
axis denotes the parameter value, and the y-axis denotes the num-
ber of correctly triaged builds by BUILDSHERIFF. As ¢, and ¢, in-
creased, the number of correctly triaged builds increased and then sta-
bilized. As dts¢ and dtys4 increased, the number of correctly triaged
builds decreased due to the increasingly strict cluster distance thresh-
old. As sizeg; increased, the number of correctly triaged builds first in-
creased, then decreased and finally stabilized. As dt;. increased, the
number of correctly triaged builds was stable at first, then increased
and finally decreased. The optimal configuration of c,, dts;, sizes;,
dtmsg, ca and dt;¢ is 1.7, 0.57, 4, 0.73, 1.8 and 0.82. As these param-
eters changed, the number of correctly triaged builds was always
above 79, which was significantly higher than the achieved results
of 1F1LE, 1IFRAME and REBUCKET. In that sense, the effectiveness of
BUILDSHERIFF is not very sensitive to these parameters.

For mDt, in 82, we heuristically set it as one plus the maximum of
the distances of the frames that reach changed files on G for all the
100 broken builds with exception failures. We heuristically set mDt,
in 82 in the same way. In this way, both mDt, and mDt, were con-
figured to 6. We used such a heuristic way that the parameter con-
figuration space is reduced, and frames and test code tokens that do
not reach any changed file can still contribute to triage.

Note that in Sec. 4.2 and 4.4, we reported the results of the optimal
configuration of BUILDSHERIFF. For 1FILE, 2FRAME and REBUCKET,
we also reported the results of their optimal configuration.

Summary. Overall, the sensitivity of the configurable parame-
ters to the effectiveness of BUILDSHERIFF is acceptable.

4.6 Discussion

Assumptions. As BUILDSHERIFF is designed for test failure triage
in CI builds, it can be used for software systems whose development
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process follows the continuous integration practice, where develop-
ers frequently merge their code changes into a central repository
and builds and tests then run. Therefore, if the continuous integra-
tion practice is not followed, or the continuous integration practice
is followed but the software system has a small number of tests,
BUILDSHERIFF will become not applicable, or be less helpful.
Threats. One threat to our evaluation is that the size of our data
set is not large. This is primarily due to the expensive effort in build-
ing the ground truth as we are not familiar with the business logic of
open-source projects. We plan to collaborate with our industrial part-
ners to deploy our tool into their CI to get developers’ feedback. Be-
sides, BUILDSHERIFF is evaluated based on broken builds across het-
erogeneous projects. We plan to evaluate BUILDSHERIFF within the
build history of one project. In addition, two usage scenarios in
Sec. 3.5 are considered in our evaluation, and there could be other us-
age scenarios. However, we believe the two usage scenarios are rep-
resentative in practice. It is also hard to determine whether test exe-

cution effort or test failure inspection effort is more expensive, and thus

we evaluate the triage effectiveness with both dimensions.
Limitations. First, BUILDSHERIFF only triages test failures, but can-

not directly pinpoint the root causes in source code which would be
useful for developers to fix test failures. Second, some engineering
effort is needed to extend BUILDSHERIFF to support other program-
ming languages, other CI services and other build tools by providing
specific implementations for triage knowledge preparation. Third,
the design of BUILDSHERIFF does not consider flaky tests. If a flaky
test is triaged into a cluster that has a different root cause from flaki-
ness, and is selected as the representative test for manual inspection,
the root cause of the cluster will not be fixed. Therefore, flaky tests
could reduce the effort saving capability of BUILDSHERIFF. To miti-
gate this problem, we can apply flaky test detection techniques (e.g.,
[7]) before BurLDSHERIFF. Notice that there is no failure that is due
to flakiness in our evaluation data set. Last, exception messages may
be not available for some failed tests. In all the failed tests in 80,778
broken builds with exception failures, 89.0% of the failed tests con-
tain exception messages. Without such messages, S3 becomes use-
less. In the extreme case, BUILDSHERIFF without 52 still outperforms
the existing methods (i.e., the fifth row in Table 3).

5 RELATED WORK

Stack Trace-Based Failure Triage. Brodie et al. [11] used the longest

subsequence of common functions in stack traces as the indicator of
stack trace similarity to identify re-occurring failures. To improve it,
Brodie et al. [10] and Modani et al. [47] removed recursion and unin-
formative functions from stack traces before stack trace matching.
Bartz et al. [6] proposed a machine learning technique to find sim-
ilar stack traces. However, this technique requires features (e.g., pro-
cess name) that are often not available in test failures in CL.
Glerum et al. [23] proposed the crash bucketing algorithm in Win-
dows Error Reporting (WER) by analyzing memory dumps collected
from users. This technique requires knowledge (e.g., heap corrup-
tion) that are not available in test failures in CI. Kim et al. [39] pro-
posed crash graphs to provide an aggregated view of the stack traces
in the same bucket in WER. Differently, Koopaei and Hamou-Lhadj
[40] modeled and abstracted the stack traces in the same bucket as
an automaton. Dang et al. [15] improved the algorithm in [23] by
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measuring similarity between two stack traces. However, it needs to
learn parameters’ value from historical buckets.

Mozilla grouped crash reports by the top function in the stack trace,
which was then improved by Dhaliwal et al. [17]. Lerch and Mezini
[43] compared stack traces with TF-IDF to group bug reports.

These techniques use stack trace similarity to triage crash or bug
reports. Differently, our work is focused on triaging test failures
for each CI build. In this context, code changes in each build pro-
vide a good source of knowledge for triage, and thus we involve code
changes in measuring stack trace and test code similarity. Moreover,
these techniques are not applicable to assertion failures as such fail-
ures do not report any informative stack trace, but our work does.

To the best of our knowledge, one closely related test failure triage
work was recently proposed by Golagha et al. [25]. It targeted test
failures in CI. However, this technique was specifically designed for
automotive industry, and thus the general, bug history and test case
similarity features are not available in test failures in general CL

Profiling-Based Failure Triage. Podgurski et al. [52] used pro-
files of failure executions and successful executions to group failures.
Francis et al. [22] improved it by refining the initial classification of
failures. Liu et al. [45] measured the failure similarity on dynamic
slices. Given failing and passing executions, Liu et al. [44, 45] lo-
cated bug location for each failure, and regarded two failures as simi-
lar if roughly the same bug location was suggested. DiGiuseppe and
Jones [19] clustered failures with the semantic concepts that were ex-
pressed in the executed source code. Golagha et al. [26] clustered failed
tests with execution profiles. However, they would impose large
overhead due to profiling, which are not practical for CI [46].

Cui et al. [14] triaged crashes based on program semantics recon-
structed from memory dumps. Pham et al. [51] used the symbolic ex-
ecution tree to cluster failed tests. van Tonder et al. [65] used the ap-
proximated fixes to group crashes. These techniques aim to achieve
semantic-aware crash triage, but would suffer scalability issue in CI.

Text-Based Failure Triage. The textual information (e.g., title
and description) in bug reports are used to identify duplicate bug
reports. Various techniques have been used to achieve this purpose,
e.g., natural language processing [57, 68], machine learning [9, 35,
41, 58, 62], information retrieval [13, 32, 54, 61, 63, 64], and topic
modeling [2, 3, 49]. However, for test failure triage in CI, there is
no such descriptive text that can be utilized.

Crash Analysis. Other crash analysis methods include fault lo-
calization [27, 53, 70, 72, 74] and failure-inducing change identifica-
tion [69, 71, 75], crash prioritization and assignment [38, 60], crash
reproducing [5], and crash root cause classification [28, 29, 36, 56].
It is interesting to explore how they can practically work in CL

6 CONCLUSIONS

In this paper, motivated by our large-scale study on test failures in CI,
we propose a new change-aware approach, BUILDSHERIFF, to triage
test failures in each CI build. Our evaluation has indicated that BurLp-
SHERIFF can significantly improve the state-of-the-art and be prac-
tically used in CI with a time overhead of 1.61 seconds for a build.
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